Open Source Physically Based Rendering with

appleseed

<¢

P

Francois Beaune

Project Founder

FMX2015

May 05-08, Stuttgart

Hi everyone!

- Thanks for attending my talk, appreciated! | hope you’ll enjoy it.
My name is Francgois Beaune,
I’'m the founder of the appleseed project.

My talk is split in two parts:

- Inthefirst part, I'll explain what appleseed is and how it works in practice

- Inthe second part, I'll talk about Fetch, a short film we completed last year.
We should normally have time for questions at the end.

appleseed

- Alright, so let’s get started with appleseed.

appleseed

* Open source rendering engine
* Designed for VFX and animation
* Targeted at individuals and small studios

appleseed is an open source rendering engine
Specifically designed for visual effects and animation
That means:
- Supporting large scenes
- Lots of geometry
- Lots of textures
- Motion blur everywhere
- Avoiding flicker at all costs
- Nothing worse than debugging flickering in a heavy shot
- Being reliable and flexible
Mainly targeted at individuals and small studios

appleseed

* Started in June 2009
* Small, professional team

* Not our main job

Started in 2009
- Asareference: Cycles, the other animation- and VFX-oriented open source renderer, was started in 2011 (as far as | know)

We all work (or worked at some point) in the industry
We're doing this in our free time

That’s the kind of things we like to do

Great excuse for many side projects such as animation shorts

Allows us to travel quite a bit

And to meet many many interesting people

So it’s a pretty cool hobby really

appleseed

Pure CPU renderer
Unidirectional path tracing
Physically-based

Highly programmable

So, at this time, appleseed is a pure CPU renderer.
GPU rendering is certainly a thing, and might be faster

- But there are many things that we want to do that cannot run on the GPU (today)

- Still many graphics drivers / CUDA / OpenCL issues and other incompatibility problems
appleseed is mainly a unidirectional path tracer (like Solid Angle’s Arnold)

- Butit has other experimental engines such as light tracing or SPPM

- We plan to implement and evaluate BDPT and VCM (we already have all the building blocks)
Physically-based lighting, shading, and cameras
Highly programmable (we’ll come back to this)

appleseed

LIGHT TRANSPORT
Distributed Ray Tracing
Unidirectional Path Tracing
Stochastic Progressive Photon Mapping

Light Traci

RENDERING MODES
Multi-pa endering
Progressive rendering
Interactive rendering
Scene editing during rendering
Spectral rendering (31 bands
GB rendering

Automatic spectral / RGB switching

CAMERA MODELS
Pinhole camera
Spherical camera
Thin lens camera (depth of field)
Polygonaldiaphragm shapes

Image-based diaphragm shapes

LIGHT SOURCE MODELS

Point light

Directional/parallel light

Mesh light

Purely diffuse emission profile
Cone-shaped emission profile
Image-based lighting
Latitude-longitude environment maps
Mirror-ball environment maps
Preetham physically-based day sky
Hosek & Wilkie physically-based day sky

Physically-based sun

REFLECTION MODELS

Lambertian BRDF (purely diffuse)
Specular BRDF (perfectmirmror)
Specular BTDF (clear glass)
Oren-Nayar Micofacet BRDF
Ward Microfacet BRDF

Blinn Microfacet BRDF

GGX Microfacet BRDF
Microfacet BTDF (rough glass)
Anisotropic Ashikhmin-Shirley BRDF
Kelemen BRDF

Disney's Layered BRDF

Arbitrary mixture of BRDFs

I’'m certainly not going to go over all the features available in appleseed

As you can see there are many

A lot of them are typical features anyone would expect from a production renderer

The full list of features is available on our website (URL at the end)

MOTION BLUR

Cameramotionblur
Transformation motion blur
Deformation motion blur

Arbitrarily number of motion st:

PRODUCTION FEATURES

Open Shading Language
OSL shader library

Disney's SeExpr expressions
Rule-based render layers
Hierarchical instancing
Per-instancevisibility flags
Alpha mapping
Automatic color space conversions
Ray bias

Light NearStart

Max Ray Intensity

Dozens of diagnosticmodes

INTEROPERABILITY

Windows, Linux and OS X (64-bit)
0BJ, Alembic, BinaryMesh (proprietary)
OpenEXR, PNG

OSL shaders

Gaffer integration
Maya integration

Blender integration

HACKABILITY

Fully open source, MIT license

Very cleancode

CMake build system

Full featured C++ AP|

Full featured Python 2.x/3.xAP|

More than 1200 buik-inunittests
Hundreds of buik-in performance tests

Rich, automatic functional test suite

PERFORMANCE

Multithreaded, scalable

SSE / SSE2 vectorization
Memory-bounded texture cache
Multiple Importance Sampling

Efficient handling of alpha maps

TOOLS

Graphical tool for scene edition
Command line renderer
Dropbox-based renderfarmtools

OSL compiler and tools

So, instead, I'd rather show you appleseed in action.

Here is a model made by my good friend Frangois Gilliot.

It’s a robot girl called Gally, from the manga ‘Battle Angel Anita’ (Gunnm in Japan, pronounced Ganmu)
Pardon the missing eyes and highly incomplete lookdev, the model is far from finished.

71.8 million triangles
2.4 GB of textures
Disney layered BRDFs
SeExpr expressions

Image-based lighting

Depth of field

Average workstation
Intel Core-i7 5820K (6-core)
16 GB of RAM

So it’s a reasonably large model.

ull_fmx_screencast_06_turbosmooth.appleseed - appleseed.studio - 0

(Video)

10

- Hereis a converged closeup of the finger joints.

- And here is another render of the hand, from a different angle.

appleseed

* Modern
* Interactive
* Single pass
* Tessellation-free
* Flicker-free

| want to stress that we’re taking a modern approach to rendering
- Infact most renderers are moving in that direction these days
We want to have a continuum between interactive rendering and final frame
- Same rendering engine, same settings, just different quality levels
We're targeting single pass rendering
- Inparticular no prior baking of point clouds or brick maps, no shadow maps...
As far as possible, we’re doing direct ray tracing without pre-tessellating surfaces into triangles, or curves into segments
Again, as far as possible we’re using flicker-free techniques, we’re avoiding biased techniques such as all forms of particle tracing

appleseed

* Reliable
* Avoid (bad) surprises
Avoid crashes
Avoid regressions
Value correctness
Incremental change = incremental effect

We're trying to make appleseed as reliable as we can. That means:
Avoiding bad surprises
Good in previz = good in final render
Avoiding crashes
Avoiding regressions.
We strongly value correctness
Different algorithms must converge to the same image
Forward path tracing vs. backward path tracing
Path tracing vs. particle methods
We regularly do these checks, and they are part of our test suite

appleseed

* Flexible
* Avoid arbitrary limitations
* Provide tons of public extension points
* Maximize programmability
* OpenShadinglLanguage
* Disney’s SeExpr
* Full C++ API
* Full Python 2.x/ 3.xAPI

We're also commited to flexibility.
Obviously we avoid introducing arbitrary limitations, and there aren’t many (that I’'m aware of)
We provide tons of extension points
It’s only a few lines of code to replace a component, or to bypass an entire part of the renderer
We make sure to provide as much programmability as possible
We fully support OSL for shading
We also support SeExpr expressions in a growing number of places
We have full C++ and Python APIs

appleseed

* Hackable

* Fully open source
Liberal license (MIT) from the start
Everything hosted on GitHub
Development fully in the open
Using only open source or free tools
Welcoming, helpful, mature community

Hackability means removing barriers to entry.
Everything we do is 100% open source
All our code is under the MIT license, from the beginning
That means commercial embedding is OK
Everything is hosted on GitHub
Source code for appleseed and all related tools
Issue tracker
Documentation
Wiki
Web site...
We're only using and relying on open source software
Except Visual Studio on Windows (which is free but not open source)

appleseed

Team & Process

- lwant to quickly highlight the role and contributions of our team members.

'\\
. '\‘f //2

- So here are the principal members of the team.

- Atthe moment we’re only two developers working on the core renderer.

GSoC ‘14
Students

- We were fortunate enough to participate to Google Summer of Code last year,
- And we had two very talented students that did a really good job

- One who worked on curve rendering for hair & fur

- One who worked on the material editor in appleseed.studio

Exporters &
Integrations

'\\
'\‘f //2

These guys do a great job at connecting appleseed with DCC apps such as Maya, Blender or Gaffer.

- And finally this is the team that worked on the short film Fetch about which I'll talk next.

appleseed

* Core practices and values
* Collective code ownership
* Continuous refactoring
Pull requests reviews
Unit tests
End-to-end tests
Performance regression tests

Finally, | want to quickly mention a set of core values and practices that we share, since these have a direct impact on the quality of our work:
Collective code ownership: We're all allowed to touch or improve all of the code
Continuous refactoring: We keep simplifying and clarifying the code whenever we can
We do friendly but honest reviews of pull requests
PRs are usually good for merging after a couple rounds of reviews and fixes
We do lots of testing, most of it is automated
This allows us to refactor the code while avoiding regressions

appleseed

Selected Works

- Here are a few recent works done with appleseed.

Light & Dark (BBC Four Documentary)

Here’s a short clip from Light & Dark (video).

Light & Dark (BBC Four Documentary)

- Thisis a frame from a CG sequence in Light & Dark, one of two documentaries that were made for BBC Four and that aired last year on British TV.

Light & Dark (BBC Four Documentary)

Another one.

Character designs by appleseed users

Fetch, a very short film

- This is a frame from Fetch, the short film we’ll talk about next.

Fetch, a very short film

And another one.

appleseed

appleseed now fully integrated into Image Engine’s Gaffer

appleseed is now fully integrated into Gaffer
Gaffer is an open source lookdev application by Image Engine
Which is a VFX company based in Vancouver, which worked on Elysium, Zero Dark Thirty, District 9...
This is the result of the phenomenal work by Esteban Tovagliari, in conjunction with John Haddon from Image Engine

i Gaffer: scene template.gfr.* - /home/est/gaffer/projects/default/scripts

Gaffer File Edit Layout Execute Help

Viewer : Outputs Node Editor : Outputs

Node Name Outputs

Settings

Interactive/Beauty
beauty
ieDisplay
rgba
displayHost localhost
remoteDisplayfype Gafferimage::Gaff erDisplayOriver
quantize Float
displayP ort 1559

driverType ChertDisplayDriver

640x480, 1.000, /scene/camera Node Editor : Inte o

Node Name eractiveAppleseedRender InteractiveAppleseedRender

Node Graph
Settings

Stopped

Update Attributes

Update Cameras

Applatoedinter ativeOptions Applesecdhonder

InteractiveAppieseedhender

100 100

Here’s a quick demo of appleseed inside Gaffer.

appleseed

Welcoming contributions!

- We're welcoming contributions of all kinds!
- Soif you feel like writing some code, or doing testing, get in touch with us!

appleseed

Home

GitHub

Development Mailing List

Twitter

| put the principal links on this slide, but you can also just type ‘appleseed renderer’ in Google and you should be good to go.

Making Fetch

- Alright, let’s move to the second part of this talk: Making the short film Fetch.

Making Fetch

* Initiated “Project Mescaline” in June 2012

* Goals:
* Test & validate appleseed on a small production
* Showcase & promote appleseed
* Sharpen our skills
* Have fun with friends

* Constraints:
* Final render 100% appleseed
* Tiny budget

We initiated what we called ‘Project Mescaline’ (I don’t exactly remember why) in June of 2012.
The main goal of this project was to test and validate appleseed on a small production
We also wanted to have some cool material to showcase and promote appleseed
It was also a good occasion to sharpen our skills, and have fun with friends (which we totally did)
We had two main constraints though:

The final render had to be 100% done with appleseed

And we only had a tiny budget.

Making Fetch

* Small team:
1 for direction & art
1 for pipeline & render
1 for sound effects & soundtrack (late in project)
Help from friends

* Strictly free-time / rainy days project

e Effort:
* Planned: 8 months

e Actual: 19 months ©

As | showed earlier, we were a very small team:

One person (Frangois Gilliot) was responsible for the direction, and for all the graphics arts

One person (me) was responsible for pipeline setup and the final render

And one person (Ulric Santore) was responsible for sound effects and soundtrack

He was only involved at the end of the project, and he did a terrific job

We also got the occasional help from friends, in particular Jonathan Topf for the Maya-to-appleseed exporter
Like appleseed, this was a strictly free-time / rainy days project.
We kind of blew the schedule... Butit's OK ©

Making Fetch

* “Fetch, a very short film”

* 2 minutes hand-animated short
* Targeted at kids

* Miniature look

* Fully rendered with appleseed

So the film is appropriately called ‘Fetch, a very short film’

It’s a 2-minute hand-animated short

Targeted at kids

We went for a miniature look

Definitely inspired by the animated film Coraline, produced by Laika

And of course, as this was the goal, every single pixel was rendered by appleseed

(Video)

Making Fetch

Pipeline
Render Setup
Render Farm
Conclusion

So I'll be talking about three technical aspects of the making of Fetch
Our render pipeline
How we did the render setup
And our custom render farm

Making Fetch

Pipeline

Making Fetch — Pipeline

* Modeling, animation, lookdev in 3ds Max
* Tool of choice for the artist

* Lookdev mostly with V-Ray
* Integrated in 3ds Max

All modeling, animation and lookdev was done in 3ds Max

There wasn’t much discussion about it, it was just the tool of choice of the artist.
Lookdev was mostly done with V-Ray

Again because it’s the tool of choice of the artist

Also because the integration of V-Ray in 3ds Max is solid

Making Fetch — Pipeline

* Problem: no 3ds Max-to-appleseed exporter
* Writing a full-featured exporter for 3ds Max too big of a project

* Solution:

The first problem was of course that, while we had an exporter for Maya (called mayaseed), we didn’t have one for 3ds Max.
We thought we wouldn’t have time to write a full-featured exporter for 3ds Max

On a side note, it turned out we would have had time, and maybe that would have been a wise decision...
Our ‘brilliant’ solution was to rely on Maya for the export, and on the FBX file format for scene data transport...

Making Fetch — Pipeline

* Problem: no 3ds Max-to-appleseed exporter
* Writing a full-featured exporter for 3ds Max too big of a project

* Solution:

L]

MAXScript

Of course, we had to automate a bunch of intermediary tweaks to get it all to work:
In 3ds Max, before the FBX export
In Maya, right after the FBX import
And right after the export to appleseed scene files

Making Fetch — Pipeline

* FBX format would lose lots of information

* Area lights
* Gobos
* DOF parameters...

* Several custom scripts to remedy this
* 3ds Max side (MAXScript)

* Store various info into custom attributes
* Prepare the scene before FBX export
* Maya side (Python)
* Retrieve info from custom attributes
* Adjust materials

One of the reason was that the FBX file format is totally not suited for transporting film scenes across DCC apps
It cannot adequately represent
Area lights
Gobos (projection textures on spot lights)
Depth of field parameters...
So the first set of scripts were ran in 3ds Max, before FBX export
They would store as custom attributes everything that cannot be represented by FBX
And generally speaking, they would prepare the set before export
You can see here on the right the Ul we built for these scripts
The second set of scripts were ran in Maya, after FBX import
Retrieve the info from custom attributes and apply them to the scene
Adjust materials somewhat

Making Fetch — Pipeline

* Initial lookdev mostly with V-Ray 3

* Materials translated to appleseed
* Automatic translation during export

* Lots of post-export tweaks
* Automatic tweaks via Python scripts

As | explained earlier, the lookdev was done with V-Ray 3
That meant we had to translate V-Ray materials to appleseed
That was mostly done automatically with our pre-FBX and post-FBX scripts
But some more tweaking was necessary after the export to appleseed
A Python script that would directly alter the appleseed scene files (looking for objects and materials by name)

Intermezzo: this is the color script of Fetch

Making Fetch

Render Setup

- Let’s talk now about our render setup...

Making Fetch — Render Setup

* Art direction called for:
* Miniature look = realistic lighting + shallow DOF
Mostly forest shots with almost no direct illumination

Millions of grass blades and tree leaves in nearly every shot
* All translucent (thin translucency)
* All using alpha cutouts

Image-based lighting in 25% of the shots

Many scenes with really strong motion
* Transformation and deformation

Usually, stop motion look means no motion blur
But we wanted to demonstrate appleseed’s motion blur capabilities so we decided to use it nevertheless

Making Fetch — Render Setup

* Art direction called for:
* Miniature look = realistic lighting + shallow DOF
Mostly forest shots with almost no direct illumination

Millions of grass blades and tree leaves in nearly every shot
* All translucent (thin translucency)
* All using alpha cutouts

Image-based lighting in 25% of the shots

Many scenes with really strong motion
* Transformation and deformation

Making Fetch — Render Setup

* Physically-based materials & lighting
* Unidirectional path tracing, 2 bounces
* 64-400 samples/pixel depending on DOF and MB
* Single pass, no baking whatsoever
* One AQV per light (4-6 lights per shot)
* Plus a few special AOVs
* Girl’s hair
* Wolf’s eyes...

So this is how we setup our rendering:
Of course we went for physically-based materials and lighting
Since that’s what would allow us to achieve a miniature look
We limited path tracing to two bounces
Not sure more bounces would have been much slower since most surfaces are rather dark
We used anywhere from 64 to 400 samples/pixel depending on DOF and MB

Making Fetch — Render Setup

* Full HD resolution (1920x1080)
* 24 frames/second
« 2767 frames (~ 115 seconds)

- We chose to render at full HD resolution

- And we chose 24 frames/second
- In hindsight, we could have chosen a lower frame rate, which would have made sense in the stop motion context

Making Fetch — Render Setup

* 3120 individual scenes to render
« 2767 frames + a couple backgrounds rendered separately

* 32 GB of final render data
* OpenEXR textures (RLE-compressed)
* Proprietary geometry format (LZ4-compressed)

* Tens of thousands of files

- Intermezzo: just a drawing

Making Fetch

Render Farm

- Alright, so let’s talk now about how we actually managed to render that short film...

Making Fetch — Render Farm

* Obviously too much work for one or even a couple machines

* No money meant:
* Not buying additional machines
* Not renting a render farm
* Not paying for Amazon Web Services

e So?

Obviously we had way too many frames to render for a single machine, or even a couple of machines
And since we had no money to spare, we couldn’t

Buy additional machines to build our own render farm

Rent a render farm

Build a farm using AWS

Making Fetch — Render Farm

* Friends to the rescue!

* Challenges:
* 32 shots, tens of thousands of files, GB of data
Friends all around the place in Europe
Random machines
Random OS
Machines only available occasionally
Many machines behind firewall / NAT
No technical expertise or rendering experience for most of them

- Atthis point we decided to involve our friends.
- Butthat brought its own set of challenges.

Making Fetch — Render Farm

Solution:

DYI render farm based on Dropbox

The solution to this nightmare came in the form of a custom render farm system built around Dropbox
The inspiration for this came from a tiny script that one of our team member, Jonathan Topf, who wrote to render the animations from the Light & Dark documentaries | talked about earlier.

Making Fetch — Render Farm

Use Dropbox as delivery channel,

and for command & control

- The core idea is to use the Dropbox shared directory mechanism:
- Todeploy appleseed binaries to render node
- Reliably send scene data to render nodes
- Reliably send rendered frames back to some kind of ‘master’ node

Making Fetch — Render Farm

Frangois’ Computer
Render Manager

So this is the overall architecture of our system.

DATA
Shared Dropbox Directory

FRAMES
Shared Dropbox Directory

Kim’s Computer
Render Node

Thomas’ Computer
Render Node

Michael’s Computer
Render Node

Making Fetch — Render Farm

(DAY AN
Shared Dropbox Directory

* Shared directory
* Assume Dropbox Basic accounts (free!) =2 GB

* Hosts:
* appleseed binaries for Windows, Linux and OS X
* Data for one or multiple partial shots

- The central piece is a shared directory we call DATA
- Free Dropbox Basic accounts are limited to 2 GB, so that’s the upper limit for the content of this directory.
- Inthis directory we’ll store three things:
- appleseed binaries for Windows, Linux and OS X
- Shot data (scene files, textures, geometry, etc.)
- Afew rendered frames
- This directory *is* the central delivery and command & control mechanism.
- It'simportant to note that, regarding shot data, we may have:
- multiple different shots at the same time
- partial shots (only parts of the frames)

Making Fetch — Render Farm

* Shared directory on Dropbox Pro accounts

* Hosts all rendered frames
* Ended up with 140 GB worth of OpenEXR files

* Only shared between team members

FRAMES
Shared Dropbox Directory

We also have a second directory we call FRAMES
For this one we assume Dropbox Pro accounts, so limited to 1 TB of data
This directory hosts all the frames renderer so far
We ended up with about 140 GB worth of OpenEXR files
This directory is only shared with team members, not with the render farmers

Making Fetch — Render Farm

A variety of 64-bit machines :
7 P
* Windows Vista, 7, 8 Kim’s Computer
e Linux Render Node

* OSX

Mostly quad core machines Thomas’ Computer
Render Node

Typically available nights and week-ends
Render nodes run the render node script Michael’s Computer
Users free to kill render node script at any time ieaats

Then we have the Render Nodes themselves
These are just random 64-bit machines running a variety of operating systems
Windows Vista, Windows 7, Windows 8
Linux
0OS X
We had mostly quad core machines, but not only
These machines were typically available on nights and week-ends only
Render nodes run a Python script we call the render node script
Acquires render jobs and executes them
Machine owners were free to kill the render node script at any time to reclaim their machine

Making Fetch — Render Farm

* Render nodes run a Python script:

Loop:
“Acquire” scene by appending a per-machine suffix to scene file
Render scene
Move rendered frame files to “frames” subdirectoryin

Move rendered scene file to “archive” subdirectory in

The render node script runs a main loop:
It first ‘acquire’ a random available scene file by appending a per-machine suffix (a short id) to the file
It then render the scene locally
Once done, it moves the rendered frame (up to a dozen OpenEXR files) to a ‘frames’ subdirectory
And finally it moves the scene file to an ‘archive’ subdirectory

Making Fetch — Render Farm

* Underpowered Core i5 laptop

* Managing rendering:

* Upload/remove shot data as required
Frangois’ Computer .
Render Manager

Honor 2 GB size limitation of at all times
* Move rendered frames from to
* Monitor and print render farm health, activity and progress

* Running 24/7

Finally we have the Render Manager, which was just my laptop (my main machine at the time)
- Definitely a low-spec machine, certainly too weak for any serious compute task
- But enough to manage rendering (and to develop appleseed)
- Sothe tasks of the Render Manager are:
- Upload shot data as required
- Remove unused shot data to honor the 2 GB size limitation at all times
- Move rendered frames from DATA to FRAMES
- Monitor and print the render farm health, activity and progress
- My machine was running nearly 24/7 at the time
- lactually surprised it didn’t kill it

Term --max-size 1536 --source . --target "c\f

Here is a random screenshot | found while making this presentation
Nevermind the red rectangle highlighting the machine pings
- lwas probably just excited to show this new feature to someone at the time this screenshot was made
- Soin this picture you can see:
- Asummary of what the DATA directory contains
- Frame files being rendered by machines
- Machines are identified by a short id, typically the initials of its owner
- Pings, to check when we last got news from a machine

- If you're curious, pings were derived from the ‘Last Modified’ date on the scene files
And then what actions the render manager is taking

Making Fetch — Render Farm

* Render Manager Robustness
* “Rendering state” fully implicit
* Render manager free to start/stop/crash at any time

The key to making the render managed robust was to make it state-free
The ‘rendering state’ was entirely determined by the files in DATA
That meant that | could start or stop the render manager without impacting rendering
For instance to fix a bug in the script
If the render manager crashes or stops:
Render nodes simply run out of work
Or the DATA shared directory fills up and nodes no longer gets Dropbox updates

Making Fetch — Render Farm

* Render Nodes Robustness

* Not all geometry files or textures available to render given scene
* On Windows: appleseed crash = Windows Error Reporting Message Box

L appleseed.cli.exe

appleseed.cli.exe has stopped working

Windows is checking for a solution to the problem...

- Geometry files or textures could be missing to render a given frame
- Sothe render node scripts has to check if all dependencies are present before rendering
- Parse scene file (XML) and extract file names
- On Windows, if appleseed crashes, by default a message box opens
- That stalls the render node until someone gets in front of the computer to manually close the message box
- Sothe render node script disables Windows Error Reporting on startup (and restores it on exit)

Making Fetch — Render Farm

* Advantages
* Easy for friends to join & participate
Reliable transport of scene data and rendered frames
Easy to add/remove render nodes
Easy to update new appleseed binaries
Easy to analyze performance and crashes of render nodes
Eventually quite robust

- Intermezzo: a close-up of the wolf with his curious feather-like fur...

Making Fetch

Conclusion

- Let’s conclude this section, and the talk.

Mescaline Render Planning

3ds max Needs Needs Shulter Open Puoel Light Env

Version Description
F start / end DOF? Sky? Duration Samples Samples Samples

Pending Remarks Color Legend Rendenng

Total number of frames

It’s hard to say how long rendering eventually took
- Since it was mixed up with lots of activities such as preparing shots, exporting them, etc.
A couple weeks seems like a reasonable estimate

Making Fetch — Conclusion

* Special developments
* Efficient handling of massive number of alpha cutouts
* Dropbox-based render farm tools
* Vast improvements to Maya-to-appleseed exporter (mayaseed)

* Everything has been released

Making Fetch led to a few interesting developments:

Very efficient handling of large number of alpha cutouts

The Dropbox-based render farm system we just talked about

And vast improvements to mayaseed, our Maya-to-appleseed translator
Everything that we did for Fetch founds it way into official releases.

Making Fetch — Conclusion

* appleseed one of the most reliable component of the pipeline

* Did not have to worry about:
* Flickering
* Glitches in the middle of a shot
* Unpredictable catastrophic slowdown

Retrospectively, appleseed was certainly one of the most (if not the most) reliable component of the pipeline

We did fix a few important bugs at the very beginning of the project, but after that it was very reliable

Flickering has never been a concern, and we didn’t get any

Similarly, when we did encounter render glitches in the middle of the shot, they were due to a bad scene setup, not due to appleseed
We didn’t suffer from unpredictable performance problems such as catastrophic slowdown...

Making Fetch — Conclusion

* Only two questions:
* What render settings?
* How long will it take?

We were basically left with only two questions:
What render settings to use for acceptable noise levels & render times?
How long will the render take for any given shot?

Making Fetch — Conclusion

* What would we do differently today?
* Export Alembic files from 3ds Max
* Lookdev in Gaffer
* Real hair?
* OSL shaders?

Making Fetch — Conclusion

* Published on Vimeo

* Picked up by many big animation channels, ended up on YouTube
* Great reception on the web

* Some really nice articles written about the project

Making Fetch — Conclusion

» Official TIFF Kids 2015 selection!

=K

- s WERTENAL

| « APRIL 7-19
Al FESTIVAL APR

- We were actually invited to Toronto last month to present the film!

Thank you!

Questions?

We've got a few minutes, I'll be happy to answer any question!

Additional References

Direct Ray Tracing of Full-Featured Subdivision Surfaces with Bezier Clipping

Direct ray tracing of Catmull-Clark subdivision surfaces by Takahito Tejima et. al. (Pixar)
Intersection of Bézier patches without pre-tessellation
Supports full set of RenderMan and OpenSubdiv features
Hierarchical edits, creases, semi-sharp creases, corners, etc.

appleseed

* Many important features still missing
* Volume rendering
Subsurface scattering
Subdivision surfaces
Displacement

Robust, complete, performant Maya integration
Documentation

g Gaffer: material tester metal2.gfr * - /home/est/gaffer/projects/default/scripts

Gaffer File Edit Layout Execute Help

Viewer : Display Node Graph Node Editor : AppleseedOptions

o e Node Name AppleseadOptions AppleseedOptions

Settings
Main (AL Samples 64, Ughting Engine pt
Passes [}
AASamples | 64
Force Antiahasing
Decorrelate Pixels
Unidirectional Path Tracer

Mesh File Format

Environment | Emvironment fscene/hghts em b
Distribution Ray Tracer
Unidirectional Path Tracer (Mar Bounces 10, Min Bounces 2, Next Evert Estimation, [BL Samples 8
Direct Lighting
Image Based Lightir
C austi
Max Bounces
512x512 1.000
RR Start Bounce
XY: 566, 163 " RGBA: 0.000, 0.000, 0.000, 0.000 HSV: 0
Next Event Estmation

Scene Hierarchy : AppleseedOptions Direct Lighing Samples
Name BL Samples
Max Ray Intensty [J

scene

Here’s a screenshot of appleseed inside Gaffer.

