
- Hi everyone!
- Thanks for attending my talk, appreciated! I hope you’ll enjoy it.
- My name is François Beaune,
- I’m the founder of the appleseed project.

1



- My talk is split in two parts:
- In the first part, I’ll explain what appleseed is and how it works in practice
- In the second part, I’ll talk about Fetch, a short film we completed last year.

- We should normally have time for questions at the end.

2



- Alright, so let’s get started with appleseed.

3



- appleseed is an open source rendering engine
- Specifically designed for visual effects and animation
- That means:

- Supporting large scenes
- Lots of geometry
- Lots of textures

- Motion blur everywhere
- Avoiding flicker at all costs

- Nothing worse than debugging flickering in a heavy shot
- Being reliable and flexible

- Mainly targeted at individuals and small studios

4



- Started in 2009
- As a reference: Cycles, the other animation- and VFX-oriented open source renderer, was started in 2011 (as far as I know)

- We all work (or worked at some point) in the industry
- We’re doing this in our free time

- That’s the kind of things we like to do
- Great excuse for many side projects such as animation shorts
- Allows us to travel quite a bit
- And to meet many many interesting people
- So it’s a pretty cool hobby really

5



- So, at this time, appleseed is a pure CPU renderer.
- GPU rendering is certainly a thing, and might be faster

- But there are many things that we want to do that cannot run on the GPU (today)
- Still many graphics drivers / CUDA / OpenCL issues and other incompatibility problems

- appleseed is mainly a unidirectional path tracer (like Solid Angle’s Arnold)
- But it has other experimental engines such as light tracing or SPPM
- We plan to implement and evaluate BDPT and VCM (we already have all the building blocks)

- Physically-based lighting, shading, and cameras
- Highly programmable (we’ll come back to this)

6



- I’m certainly not going to go over all the features available in appleseed
- As you can see there are many
- A lot of them are typical features anyone would expect from a production renderer
- The full list of features is available on our website (URL at the end)

7



- So, instead, I’d rather show you appleseed in action.
- Here is a model made by my good friend François Gilliot.
- It’s a robot girl called Gally, from the manga ‘Battle Angel Anita’ (Gunnm in Japan, pronounced Ganmu)
- Pardon the missing eyes and highly incomplete lookdev, the model is far from finished.

8



- So it’s a reasonably large model.

9



(Video)

10



- Here is a converged closeup of the finger joints.

11



- And here is another render of the hand, from a different angle.

12



- I want to stress that we’re taking a modern approach to rendering
- In fact most renderers are moving in that direction these days

- We want to have a continuum between interactive rendering and final frame
- Same rendering engine, same settings, just different quality levels

- We’re targeting single pass rendering
- In particular no prior baking of point clouds or brick maps, no shadow maps...

- As far as possible, we’re doing direct ray tracing without pre-tessellating surfaces into triangles, or curves into segments
- Again, as far as possible we’re using flicker-free techniques, we’re avoiding biased techniques such as all forms of particle tracing

13



- We’re trying to make appleseed as reliable as we can. That means:
- Avoiding bad surprises

- Good in previz = good in final render
- Avoiding crashes
- Avoiding regressions.

- We strongly value correctness
- Different algorithms must converge to the same image

- Forward path tracing vs. backward path tracing
- Path tracing vs. particle methods

- We regularly do these checks, and they are part of our test suite

14



- We’re also commited to flexibility.
- Obviously we avoid introducing arbitrary limitations, and there aren’t many (that I’m aware of)
- We provide tons of extension points

- It’s only a few lines of code to replace a component, or to bypass an entire part of the renderer
- We make sure to provide as much programmability as possible

- We fully support OSL for shading
- We also support SeExpr expressions in a growing number of places
- We have full C++ and Python APIs

15



- Hackability means removing barriers to entry.
- Everything we do is 100% open source
- All our code is under the MIT license, from the beginning

- That means commercial embedding is OK
- Everything is hosted on GitHub

- Source code for appleseed and all related tools
- Issue tracker
- Documentation
- Wiki
- Web site...

- We’re only using and relying on open source software
- Except Visual Studio on Windows (which is free but not open source)

16



- I want to quickly highlight the role and contributions of our team members.

17



- So here are the principal members of the team.

18



- At the moment we’re only two developers working on the core renderer.

19



- We were fortunate enough to participate to Google Summer of Code last year,
- And we had two very talented students that did a really good job

- One who worked on curve rendering for hair & fur
- One who worked on the material editor in appleseed.studio

20



- These guys do a great job at connecting appleseed with DCC apps such as Maya, Blender or Gaffer.

21



- And finally this is the team that worked on the short film Fetch about which I’ll talk next.

22



- Finally, I want to quickly mention a set of core values and practices that we share, since these have a direct impact on the quality of our work:
- Collective code ownership: We’re all allowed to touch or improve all of the code
- Continuous refactoring: We keep simplifying and clarifying the code whenever we can
- We do friendly but honest reviews of pull requests

- PRs are usually good for merging after a couple rounds of reviews and fixes
- We do lots of testing, most of it is automated

- This allows us to refactor the code while avoiding regressions

23



- Here are a few recent works done with appleseed.

24



- Here’s a short clip from Light & Dark (video).

25



- This is a frame from a CG sequence in Light & Dark, one of two documentaries that were made for BBC Four and that aired last year on British TV.

26



- Another one.

27



28



- This is a frame from Fetch, the short film we’ll talk about next.

29



- And another one.

30



- appleseed is now fully integrated into Gaffer
- Gaffer is an open source lookdev application by Image Engine

- Which is a VFX company based in Vancouver, which worked on Elysium, Zero Dark Thirty, District 9...
- This is the result of the phenomenal work by Esteban Tovagliari, in conjunction with John Haddon from Image Engine

31



- Here’s a quick demo of appleseed inside Gaffer.

32



- We’re welcoming contributions of all kinds!
- So if you feel like writing some code, or doing testing, get in touch with us!

33



- I put the principal links on this slide, but you can also just type ‘appleseed renderer’ in Google and you should be good to go.

34



- Alright, let’s move to the second part of this talk: Making the short film Fetch.

35



- We initiated what we called ‘Project Mescaline’ (I don’t exactly remember why) in June of 2012.
- The main goal of this project was to test and validate appleseed on a small production
- We also wanted to have some cool material to showcase and promote appleseed
- It was also a good occasion to sharpen our skills, and have fun with friends (which we totally did)
- We had two main constraints though:

- The final render had to be 100% done with appleseed
- And we only had a tiny budget.

36



- As I showed earlier, we were a very small team:
- One person (François Gilliot) was responsible for the direction, and for all the graphics arts
- One person (me) was responsible for pipeline setup and the final render
- And one person (Ulric Santore) was responsible for sound effects and soundtrack

- He was only involved at the end of the project, and he did a terrific job
- We also got the occasional help from friends, in particular Jonathan Topf for the Maya-to-appleseed exporter

- Like appleseed, this was a strictly free-time / rainy days project.
- We kind of blew the schedule... But it’s OK 

37



- So the film is appropriately called ‘Fetch, a very short film’
- It’s a 2-minute hand-animated short
- Targeted at kids
- We went for a miniature look
- Definitely inspired by the animated film Coraline, produced by Laika
- And of course, as this was the goal, every single pixel was rendered by appleseed

38



(Video)

39



- So I’ll be talking about three technical aspects of the making of Fetch
- Our render pipeline
- How we did the render setup
- And our custom render farm

40



41



- All modeling, animation and lookdev was done in 3ds Max
- There wasn’t much discussion about it, it was just the tool of choice of the artist.

- Lookdev was mostly done with V-Ray
- Again because it’s the tool of choice of the artist
- Also because the integration of V-Ray in 3ds Max is solid

42



- The first problem was of course that, while we had an exporter for Maya (called mayaseed), we didn’t have one for 3ds Max.
- We thought we wouldn’t have time to write a full-featured exporter for 3ds Max

- On a side note, it turned out we would have had time, and maybe that would have been a wise decision...
- Our ‘brilliant’ solution was to rely on Maya for the export, and on the FBX file format for scene data transport...

43



- Of course, we had to automate a bunch of intermediary tweaks to get it all to work:
- In 3ds Max, before the FBX export
- In Maya, right after the FBX import
- And right after the export to appleseed scene files

44



- One of the reason was that the FBX file format is totally not suited for transporting film scenes across DCC apps
- It cannot adequately represent

- Area lights
- Gobos (projection textures on spot lights)
- Depth of field parameters...

- So the first set of scripts were ran in 3ds Max, before FBX export
- They would store as custom attributes everything that cannot be represented by FBX
- And generally speaking, they would prepare the set before export
- You can see here on the right the UI we built for these scripts

- The second set of scripts were ran in Maya, after FBX import
- Retrieve the info from custom attributes and apply them to the scene
- Adjust materials somewhat

45



- As I explained earlier, the lookdev was done with V-Ray 3
- That meant we had to translate V-Ray materials to appleseed

- That was mostly done automatically with our pre-FBX and post-FBX scripts
- But some more tweaking was necessary after the export to appleseed

- A Python script that would directly alter the appleseed scene files (looking for objects and materials by name)

46



- Intermezzo: this is the color script of Fetch

47



- Let’s talk now about our render setup...

48



- Usually, stop motion look means no motion blur
- But we wanted to demonstrate appleseed’s motion blur capabilities so we decided to use it nevertheless

49



50



- So this is how we setup our rendering:
- Of course we went for physically-based materials and lighting

- Since that’s what would allow us to achieve a miniature look
- We limited path tracing to two bounces

- Not sure more bounces would have been much slower since most surfaces are rather dark
- We used anywhere from 64 to 400 samples/pixel depending on DOF and MB

51



- We chose to render at full HD resolution
- And we chose 24 frames/second

- In hindsight, we could have chosen a lower frame rate, which would have made sense in the stop motion context

52



53



- Intermezzo: just a drawing

54



- Alright, so let’s talk now about how we actually managed to render that short film...

55



- Obviously we had way too many frames to render for a single machine, or even a couple of machines
- And since we had no money to spare, we couldn’t

- Buy additional machines to build our own render farm
- Rent a render farm
- Build a farm using AWS

56



- At this point we decided to involve our friends.
- But that brought its own set of challenges.

57



- The solution to this nightmare came in the form of a custom render farm system built around Dropbox
- The inspiration for this came from a tiny script that one of our team member, Jonathan Topf, who wrote to render the animations from the Light & Dark documentaries I talked about earlier.

58



- The core idea is to use the Dropbox shared directory mechanism:
- To deploy appleseed binaries to render node
- Reliably send scene data to render nodes
- Reliably send rendered frames back to some kind of ‘master’ node

59



- So this is the overall architecture of our system.

60



- The central piece is a shared directory we call DATA
- Free Dropbox Basic accounts are limited to 2 GB, so that’s the upper limit for the content of this directory.
- In this directory we’ll store three things:

- appleseed binaries for Windows, Linux and OS X
- Shot data (scene files, textures, geometry, etc.)
- A few rendered frames

- This directory *is* the central delivery and command & control mechanism.
- It’s important to note that, regarding shot data, we may have:

- multiple different shots at the same time
- partial shots (only parts of the frames)

61



- We also have a second directory we call FRAMES
- For this one we assume Dropbox Pro accounts, so limited to 1 TB of data
- This directory hosts all the frames renderer so far

- We ended up with about 140 GB worth of OpenEXR files
- This directory is only shared with team members, not with the render farmers

62



- Then we have the Render Nodes themselves
- These are just random 64-bit machines running a variety of operating systems

- Windows Vista, Windows 7, Windows 8
- Linux
- OS X

- We had mostly quad core machines, but not only
- These machines were typically available on nights and week-ends only
- Render nodes run a Python script we call the render node script

- Acquires render jobs and executes them
- Machine owners were free to kill the render node script at any time to reclaim their machine

63



- The render node script runs a main loop:
- It first ‘acquire’ a random available scene file by appending a per-machine suffix (a short id) to the file
- It then render the scene locally
- Once done, it moves the rendered frame (up to a dozen OpenEXR files) to a ‘frames’ subdirectory
- And finally it moves the scene file to an ‘archive’ subdirectory

64



- Finally we have the Render Manager, which was just my laptop (my main machine at the time)
- Definitely a low-spec machine, certainly too weak for any serious compute task
- But enough to manage rendering (and to develop appleseed)
- So the tasks of the Render Manager are:

- Upload shot data as required
- Remove unused shot data to honor the 2 GB size limitation at all times
- Move rendered frames from DATA to FRAMES
- Monitor and print the render farm health, activity and progress

- My machine was running nearly 24/7 at the time
- I actually surprised it didn’t kill it

65



- Here is a random screenshot I found while making this presentation
- Nevermind the red rectangle highlighting the machine pings

- I was probably just excited to show this new feature to someone at the time this screenshot was made
- So in this picture you can see:

- A summary of what the DATA directory contains
- Frame files being rendered by machines
- Machines are identified by a short id, typically the initials of its owner
- Pings, to check when we last got news from a machine

- If you’re curious, pings were derived from the ‘Last Modified’ date on the scene files
- And then what actions the render manager is taking

66



- The key to making the render managed robust was to make it state-free
- The ‘rendering state’ was entirely determined by the files in DATA

- That meant that I could start or stop the render manager without impacting rendering
- For instance to fix a bug in the script

- If the render manager crashes or stops:
- Render nodes simply run out of work
- Or the DATA shared directory fills up and nodes no longer gets Dropbox updates

67



- Geometry files or textures could be missing to render a given frame
- So the render node scripts has to check if all dependencies are present before rendering

- Parse scene file (XML) and extract file names
- On Windows, if appleseed crashes, by default a message box opens

- That stalls the render node until someone gets in front of the computer to manually close the message box
- So the render node script disables Windows Error Reporting on startup (and restores it on exit)

68



69



- Intermezzo: a close-up of the wolf with his curious feather-like fur...

70



- Let’s conclude this section, and the talk.

71



- It’s hard to say how long rendering eventually took
- Since it was mixed up with lots of activities such as preparing shots, exporting them, etc.

- A couple weeks seems like a reasonable estimate

72



- Making Fetch led to a few interesting developments:
- Very efficient handling of large number of alpha cutouts
- The Dropbox-based render farm system we just talked about
- And vast improvements to mayaseed, our Maya-to-appleseed translator

- Everything that we did for Fetch founds it way into official releases.

73



- Retrospectively, appleseed was certainly one of the most (if not the most) reliable component of the pipeline
- We did fix a few important bugs at the very beginning of the project, but after that it was very reliable
- Flickering has never been a concern, and we didn’t get any
- Similarly, when we did encounter render glitches in the middle of the shot, they were due to a bad scene setup, not due to appleseed
- We didn’t suffer from unpredictable performance problems such as catastrophic slowdown...

74



- We were basically left with only two questions:
- What render settings to use for acceptable noise levels & render times?
- How long will the render take for any given shot?

75



76



77



- We were actually invited to Toronto last month to present the film!

78



79



- We’ve got a few minutes, I’ll be happy to answer any question!

80



81



- Direct ray tracing of Catmull-Clark subdivision surfaces by Takahito Tejima et. al. (Pixar)
- Intersection of Bézier patches without pre-tessellation
- Supports full set of RenderMan and OpenSubdiv features

- Hierarchical edits, creases, semi-sharp creases, corners, etc.

82



83



- Here’s a screenshot of appleseed inside Gaffer.

84


